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1 Introduction
Computer science researchers typically work with formal abstractions allowing them to

“prove” certain features about their models.  However, in real operational environments with real
users, real missions, and real constraints (training, time, costs, etc.), “formal” or “obvious” efforts
frequently break down, are unknown, or are ignored for more pragmatic solutions.  For example,
a researcher may begin “assume the existence of a trusted computing base”, at which point the
rest of the presentation’s practical applicability in real world operations becomes suspect.  As
researchers we should strive to bridge the world of research with practical operations.

Two of our current research efforts focus on automatic signature generation to address
fast-moving zero-day worms and attack graph analysis to identify optimal changes needed to
harden a network against cascading attacks.  While we have made progress towards developing
solutions for these threats, we have also identified a number of challenges to our solutions, and
we have been looking for alternative approaches (outside our specific lines of research) to lessen
the effects of these challenges on our solutions.

Interestingly, we identified a single approach that helps address many of the challenges to
both research efforts, and not only does this approach help the research efforts produce better
results, the approach can also be effectively used as an inexpensive stand-alone solution.
Furthermore, organizations can deploy the approach today without needing to purchase expensive
and exotic hardware, and we believe it will fit relatively well into operational real-world
networks.  For example, we have already deployed the approach in our own operational networks.
Finally, we believe the approach can provide a baseline against which other solutions to the
threats can be measured.

Section 2 presents two important threats (fast spreading server-based worms and
cascading attacks that allow an attacker to penetrate deeply into an organization), the defense
strategy others and we are researching to address these threats, and challenges to the proposed
defense approaches.  Section 3 presents the simple but potentially very effective approach that by
themselves can help address the threats presented in Sections 2.1.1 and 2.2.1 but also can make
the solution under development even better.  Section 4 shows how the approach presented
corresponds very closely with good operating system design principles.  Section 5 summarizes
the paper.  Finally, Appendix A examines in detail how the approach provided in this paper
addresses the limitations of the attack graph approach.

2 Motivations
The approach presented in this paper is not the focus of our research.  We are focusing on

the threats posed by worms, in particular server-based worms against previously unknown
vulnerabilities, and maximally hardening a network given a limited number of changes that can
be made.  In this section we summarize each of these threats, briefly discuss the defense strategies
we (and others) are taking to address these threats, and present some of the challenges that can
limit the effectiveness of the proposed solutions.

It is the challenges to the proposed defense strategies that motivates us to present this
work, because the simple approach presented in Section 3 ameliorate some of the difficulties
facing the research solutions and provide value in their own right.
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2.1 Worm-Based Threats

2.1.1 Salient Features of Worms

For the purpose of this discussion we focus on server-based worms, and we define this
class of worms as ones that attack network servers and do not need human interaction to complete
the process.  For example, most email-based worms require (1) a client application to download a
malicious email message from a server and (2) a user to open a malicious attachment.  A server-
based worm, on the other hand, takes advantage of some flaw in a server application (e.g., a web
server) to infect the server and then move on without requiring a client application or a user to
perform any additional steps.

One of the most dangerous aspects of a worm is the speed in which it can propagate
across the network, and the primary reasons behind this speed are that the worm attacks in
parallel and each infected system becomes an attacker itself.  To illustrate this issue Figure 1
shows three common attack patterns.  In each subfigure we track the penetration of eight hosts
over time.  A circle represents a host, and time progresses from left to right.  A single row
represents a single host as it progresses from a non-compromised state to a compromised state.
We color the circle black on the round that the host is penetrated, and for all subsequent rounds,
during which the host is still considered compromised, we color the circle grey.

The left-most pattern represents a human attacker working his was across multiple
systems.  Starting at the initially penetrated host, the attacker attacks a single host in round 2 (the
top-most host).  It is from this newly penetrated host that the attack penetrates the next host, and
so on.  The attack pattern is very serial.  This was the common tactic used by attackers until about
1993 and is typified by Cliff Stoll’s “wily hacker” [Stol 90]  The middle pattern represents a
scan-based attack.  In this approach the attacker, usually with automated software, attacks each
host from a single system (or small number of systems), but each newly penetrated host is not
used to automatically propagate that attack (at least not initially).  Around 1993 attackers started
using this technique to quickly scan and initially penetrate a large number of systems at an
organization, and attackers still use this method for initial penetration or to gather resources (e.g.,
zombies) to be used for other purposes (e.g., DDOS attacks or for sending spam mail).

The right most pattern represents a server-based worm attack, and it essentially combines
the strategies of the first two patterns.  Like a scan-based attack a worm-based attack can quickly
attack a number of systems.  Like a human-based attack of the first pattern, each newly penetrated
system is used to attack additional systems.  The result is a fast parallel attack with an exponential
spread rate.

Figure 1: Penetration Mechanisms and Patterns

While the simple graphs of scan-based and worm attacks in Figure 1 seems to imply that
the worm attack is only twice as fast as the scan-based attack, the penetration of the worm attack
is much faster (with exponential growth) than the scan-based attack (with linear growth).  While
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the difference is minimal after just four rounds, the difference is dramatically more apparent after
just 16 rounds.  Figure 2 demonstrates the difference between the two attack methods: each cell
represents the total number of systems penetrated by each method (vertical axis on the left) by a
given round (horizontal axis across the top).  By round 16 the scan-based attack has only
penetrated 16 systems, while the worm has penetrated over 32,000 systems. The primary threat
from worms is the rate at which they infect systems, and that speed is the result of using each
newly penetrated system to attack new systems.

Figure 2: Rate of Penetration of Worms vs. Scan-based Attacks

2.1.2 Defense Strategy to Server-based Worms

Our primary research focuses on fast moving attacks, including server-based worms and
scanning attacks, which exploit unknown vulnerabilities.  Because the vulnerability is unknown,
no patch is available, thus the attack will have free reign for at least several hours and maybe
several days before vulnerable systems can be patched.  As we have seen in the case of worms,
most vulnerable systems are penetrated within a few hours.  For systems that are not mission
critical, simply turning off the service or not using the vulnerable application may be a reasonable
response, but for mission critical services this is not an option.

Without a viable host-based solution we are developing techniques to take advantage of
the network infrastructure.  In particular, we are taking advantage of the so-called “intrusion
prevention” devices, essentially integrated intrusion detection and firewall systems, that can drop
packets and terminate connections when an attack signature is detected.  The challenge is creating
a signature for the newly detected attack that is of high enough quality (high true positive and low
false positive rates) so that network managers will have the confidence to deploy the technology
and fast enough (a few seconds at most) to be effective against fast moving attacks.

2.1.3 Challenges to Automatic Signatures and Intrusion Prevention Devices

While we have confidence in our research approach, it still face challenges.  First, given
that our time to develop a signature is relatively fixed, the exponential spread rate of worms tell
us that a much greater percentage of our network will be infected before a defense strategy can be
deployed than would be the case for a scan-based attack with its linear spread rate.  Second, since
the attack is new and against an unknown vulnerability, the first instance of the attack will get
through to a potentially vulnerable system before we can deploy a new signature (i.e., the attack
must occur before we can detect it), so if intrusion prevention device is only deployed at the
perimeter of an organization, a worm attack will be able to continue attacking internal systems
inside an organization even after a signature is deployed to the perimeter intrusion prevention
device.
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2.2 Cascading Penetration Threats

2.2.1 Introduction to Cascading Attack

Whereas the primary threat of worms is the rate at which they can infect a large number
of systems, cascading penetrations, often the result of a clever human adversary, allow an attack
to reach deep inside an organization by taking advantages of new capabilities acquired at each
stage.  Figure 3 illustrates the basic concept.  An attacker beginning outside an organization
penetrates a web server that is available through the firewall.  Once inside the firewall the
adversary takes advantage of a buffer overflow in ssh to penetrate a second system.  This second
system is not accessible to the outside world, so the adversary would not be able to attack it
directly.  From this second host the adversary takes advantage of a trust relationship to penetrate a
third host – a host that neither is accessible from the outside nor has any programming
vulnerabilities.

Figure 3: Cascading Attack Inside Organization

One of the primary reasons that cascading attacks are often successful in the wild is the
large number of unpatched vulnerabilities in organizations.  While the initial solution to the
problem is to simply patch all the vulnerabilities, there exist many reasons that this does not occur
in practice.  Some reasons include: system administrator’s time is limited and they often cannot
patch everything all the time; applying patches often require taking systems offline for periods of
time; patches often introduce instabilities, incompatibilities, and new vulnerabilities; people
responsible for an organization’s overall network security often do not have the authority to make
changes in individual systems; and untrained administrators (i.e., a user) are often responsible for
installing and maintaining personal computer operating systems and applications that are as
complex as the mainframe systems of a decade ago.  For these and other reasons, moderate to
large operational networks frequently have large numbers of vulnerabilities.

A number of strategies exist for prioritizing which vulnerabilities should be addressed
first.  Point-based strategies, typically provided by vulnerability scanner vendors, look at the
capability that a vulnerability provides an attacker and recommends first fixing the vulnerabilities
that give the attackers the greatest capabilities.  For example, the system would recommend fixing
a vulnerability that allows a remote attacker to run arbitrary commands as root or administrator
before fixing a vulnerability that allows a local user to read a protected file.  A probability-based
strategy, typically provided by intrusion monitoring services, ranks the vulnerabilities by how
frequently they are attacked.  The vulnerability that is attacked most frequently will be given a
higher priority than a vulnerability rarely or never attacked.  Goal-based strategies, a topic of
much research today, examines how one vulnerability can interact or enable other vulnerabilities
and how these interactions allow an adversary to achieve some particular goal.  Vulnerabilities
are ranked on their importance with respect to allowing an adversary to achieve a particular goal.
Research in this area is often referred to as “attack graph” analysis, and is the focus of the next
section.
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2.2.2 Attack Graph Analysis Approach to Cascading Attacks

While attack graph analysis may be considered a branch of fault-tree analysis [Gart 99],
we trace the current work back to Robert Baldwin’s Kuang system developed in the late 1980s
[Bald 94] and distributed as part of the COPS security package [Farm 90].  This system looked
for a single path on a single Unix computer from some an initial condition (e.g., an unprivileged
user) to a final condition (e.g., becoming root) by exploiting configuration files (e.g., leaving an
important file world writeable).  Later Dan Zerkle and others extended the basic Kuang concept
to a network of systems [Zerk 96].  More recently there has been a flurry of research to extend
attack graph concepts to look for all paths from an initial condition to an end goal and to include
vulnerability exploits in the generation of those paths [Shey 02] [Amma 02] [Noel 03].

In general attack graphs describe how an adversary, either an individual at a keyboard or
automated software, can through a series of steps acquire new capabilities.  These steps usually
involve the exploitation of a vulnerability.  Four our discussions here, using [Bish 02] we define a
vulnerability as follows:

A vulnerability is a set of conditions that, when all are true, can allow for a
violation of policy.

Figure 4 provides a graphic display of this definition.  An example of a vulnerability
using this definition might be: code in a network server does not perform an array bounds check
(i.e., it has a buffer overflow bug) (condition 1); the code for the server is running (condition 2);
the CPU and operating system allows instructions to be run from the stack (condition 3); and
firewalls and routers allow the adversary’s host to send data to the server (condition 4); thus the
adversary can execute arbitrary commands with the server’s UID (violation of policy).

Figure 4: Vulnerability Definition

To negate the vulnerability, only one of the conditions needs to be removed.  For
example, future CPU and OS designs will probably prevent the CPU from executing code located
on the stack, and this will block a large number of vulnerabilities.  Also, in the early days of
UNIX (e.g., SunOS and Ultrix) and later with Linux, the default installation for these operating
systems include many servers that simply did not need to be running.  By shifting to a paradigm
where only required services are active by default (a direction more vendors are taking), many
vulnerabilities are removed from the system.

Attack graph analysis identifies how a set of conditions (a vulnerability) can be exploited,
and the result of that exploitation (a new condition) contributes to a new vulnerability that can be
exploited.  In other words the second vulnerability does not exist until the first vulnerability is
exploited.
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Figure 5: Attack Graph Analysis

Figure 5 demonstrates the concept.  In the left column are two potential vulnerabilities
that can be exploited to create new conditions.  If in an operational system Condition 3 is not
present, then the second vulnerability does not exist.  However, the right column shows how by
exploiting the first vulnerability an adversary can “activate” the second vulnerability.  The
adversary can then exploit this second vulnerability to achieve Condition 4.

Our attack graph research primarily focuses on developing the capabilities to identify the
chains of conditions and exploits (the adversary’s “attack graph”) and then identifying optimal
strategies for disrupting the adversary’s attack graph.

2.2.3 Challenges to Attack Graph Approaches

There are a number of challenges for the research including data acquisition, efficient
graph building algorithms, and ensuring that you have adequate coverage of the exploit space.
There are also more fundamental problems.  The attack graph strategy is based on the assumption
that we know the attacker’s initial conditions (what privileges and on what systems they will
initially have, what tools or knowledge they possess, etc.) and what the adversary’s goal might
be.  For example, if we assume the adversary has more capability than one the network will
actually encounter, our solution for changes to the network will be less than optimal (i.e., more
work was done than was required).  More importantly, the graph-based strategy presumes the
adversary has a particular goal (e.g., achieve administrator access on the host secrets.mybase.mil),
and if we guess the wrong goal or the adversary does not have a specific goal, the proposed
changes to the network may have little relevance.  Finally, today’s attack graph research and
development is based around known vulnerabilities and exploits, so if the adversary has
knowledge or capabilities that we did not model, the attack graph recommended strategy may be
irrelevant.

While our research is examining a number of approaches to address these challenges, we
also looked at a very simple strategy that addresses many of these concerns.  Interestingly, the
strategy also addresses the concern affecting our research on stopping fast moving worms.

3 A Simple Strategy To Addressing Worms and Cascading
Attacks

This section presents a simple strategy that organizations can apply today using
commodity hardware and based on well-known design principles that can have substantial impact
on worms and cascading attacks.  For many organizations that do not have the need or resources
to deploy automatic signatures to address zero-day worms or perform deep and complex analysis
of their network to determine the ways vulnerabilities and configuration settings can interact,
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these simple steps may be enough.  For those with the needs and resources to deploy these
advanced technologies or perform the deep analysis, these simple steps can greatly increase the
effectiveness of these technologies and analyses.

Section 3.1 presents the primary motivation for the strategy.  Section 3.2 presents the two
simple steps that organizations can apply today.  When applied these steps can have a dramatic
impact on worms and cascading attacks and increase the performance of a number of research
activities.

3.1 Network as Kernel
The primary insight leading to the simple approach presented below is that a multi-user

operating system is designed with the assumption that individual users and programs cannot be
trusted to behave, and we should design our networks with a similar assumption.  In other words,
we want to design our network infrastructure assuming the individual elements using it cannot be
trusted.  Both the operating system kernel and the network infrastructure facilitate access between
elements (e.g., processes for an OS and hosts for a network), and they also (or at least should)
mediate the ways one element can interact with another element.

Figure 6: Host OS and Network Infrastructure Roles

Figure 6 demonstrates the similarities of the roles of an operating system kernel and
network infrastructure.  On the left are several processes (Proc. 1-4), each “owned” by a
particular user.  The operating system provides a number of ways for each of these processes to
communicate (e.g., sending data or signals), but the operating system also enforces limits on these
interactions.  For example, process 1 and process 2 are both owned by the user Adam, so the
operating system may allow process 1 to “kill” process 2.  However, because process 3 is owned
by Eve, the operating system should prevent process 1 from killing process 3.  On the right, are
several hosts, each playing a different role, and the network infrastructure provides a similar
capability to these hosts that the OS kernel plays on the single computer.  Because Host 1 is a
client, it should be able to initiate a communications with the Mail server and Web server;
however, in general the Web server should not be able to initiate connections to Host 1.

Operating systems are rarely developed and deployed (only a handful of operating
systems control the vast majority of systems in the world), and they are typically developed by a
team of experts trained in the various aspects of operating system design.  Network
infrastructures, on the other hand, are newly built for each individual site, and these network
infrastructure developers rarely have the depth of training or the time of those developing
operating system kernels.  As a result, the security provided by the network infrastructure
“kernels” are more similar to the security provided by the old Microsoft DOS operating system
than they are to the more modern Windows XP or UNIX-class operating systems.  Our goal,
therefore, is to develop an approach, or rules of thumb, that is simple enough to be easily applied
yet powerful enough to provide many of the desired capabilities.

3.2 The Two Simple Steps
The approach that helps slow the exponential growth rate of worms and makes it harder

for an attacker to penetrate deeply into an organization has two steps: separate functionality onto



Net Squared, Inc. TR-2004-09-01-a

8

separate hosts and apply the simplest of rules to the router to limit a host’s actions to its necessary
functionality.

3.2.1 Separating Functionality

The first step to providing the additional security that prevents the exponential spread rate
of worms and deep penetration by cascading attacks is to separate the activity performed by a
single host.  A router understands IP addresses; a router does not, in general, distinguish the
process or application that generates the packets.  This means that if a host performs activities
that are difficult for the router to distinguish from an attack, then the router probably cannot block
the attacks.

Figure 7 illustrates the problem and solution.  On the left side we have a single host
running both a web client and web server.  The web client routinely performs outbound client
requests, which the router must allow.  However, an inbound attack (dashed line) compromises
the server and then performs outbound connection requests to spread the attack.  The router
cannot distinguish the legitimate outbound web requests and the attack, so the router allows
everything.

The right side of Figure 7 shows our new and preferred network architecture.  The web
client and web server are placed on two different hosts (with two different IP addresses), and the
hosts placed on two different networks.  Because the expected activity (i.e., “the roles”) of the
two hosts are different, the router can enforce access control rules (ACLs) that allow legitimate
activity to continue while preventing the adversary from using the penetrated server to spread the
attack.

Figure 7: Separating Functionality

3.2.2 Limiting Functionality

By separating the roles of the client and server on different hosts (and on different
network interfaces), we can apply some simple access control list rules to the two interfaces to
prevent the clients from being attacked and prevent the compromised server from being used to
attack additional hosts.  The Cisco IOS operating system (as well as virtually all router and
firewall vendors) supports the application of separate access control lists to packets leaving the
router (the “out” list) and entering the router (the “in” list) (see Figure 8).  For our purpose, the
configuration of the interfaces is simplified by (1) our separation of roles for the two interfaces
and (2) the Cisco IOS reflect table feature that allows us to tie together the in and out packet
flows.
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Figure 8: Configuring In and Out Interfaces

A common configuration for networks that support hosts that only act as clients is to
allow packets into the network that are in response to outbound requests.  By default, network
appliances that support dynamic Network Address Translation (NAT) (or what Cisco describes as
NAT with Port Address Translation (PAT)) provide this capability by default.  To provide this
capability for a router supporting the Cisco IOS command set we create the following access
controls and add them to the appropriate router interface (we call it client_interface).

Figure 9: Protecting Clients From External Attacks

The first ACL, named “out_of_client_network”, allows all outbound connection requests
from the client and then records the requests in the table “client_session_req”.  The second ACL,
named “into_client_network”, allows in any packet that matches an outbound request but blocks
everything else.  These two ACLs are then applied to the appropriate interface.

To stop the server from contributing to the exponential spread of a worm or allowing it to
contribute to cascading penetration into an organization we apply nearly identical filter rules to
the server interface; the primary difference is that we are protecting the rest of the world from a
potentially compromised server.

Figure 10: Preventing Server From Attacking Other Systems

The first ACL, named “into_server_network”, allows all inbound connection requests to
the server and then records the request in the table “server_session_req”.  The second ACL,
named “outof_server_network” only allows packets out of the network that are in response to a
specific request (i.e., matches an entry in the server_session_req table).
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Using commodity hardware, these two simple ACL rules, one applied to inbound server
requests and one applied to outbound server replies, provide a powerful level of defense against
two of the most important threats facing the Internet and individual organizations.  Certainly
additional refinement can be applied these rules (e.g., limiting inbound connections into the
server only to a specified port, or allowing limited access to other hosts such as network time
protocol (NTP) servers), but these simple rules provide a sound foundation.

4 Saltzer and Schroeder’s Design Principles
As mentioned in Section 3 our goal is to, in effect, use the routing infrastructure as a

network kernel (i.e., providing and mediating access between elements in the network).  This
prevents bad elements in the network (e.g., a compromised server) from compromising more of
the network.  Indeed, the simple strategy presented here of separation of roles and mediated
access follow closely to the design principles for operating systems specified nearly three decades
ago by Saltzer and Schroeder [Salt 75].  We summarize some of those principals and how this
network approach is mapped to them:

• Economy of mechanism.  The network design presented in this paper is very simple,
using two simple ACL rules available on commodity hardware.  Other efforts to control
the exponential spread rate of worms or prevent cascading penetrations typically require
much more complex solutions or analysis.

• Fail-safe defaults.  By default, any outbound packets from the server network that are not
explicitly matched to an inbound request are dropped.  By default, the design drops
packets (a property of the implicit “deny” at the end of any ACL).  Another ACL rule can
be added to report any of these failed packets so there are no silent failures.  This can also
serve as a detection mechanism if the server is compromised and the attack tries to attack
additional systems.

• Complete mediation.  As presented in this paper, all packets to and from the server are
mediated by the ACL rules in the router.  We suspect most sites will have multiple
servers on the same side of the mediated interface (e.g., in a DMZ LAN), and in this case
the router cannot prevent the servers on the same LAN from infecting each other.
However, we hope that by using commodity hardware most sites will place a router as
close the server possible.

• Open design.  The design and router features used in this design are well known.

• Separation of privilege.  In our case, we are using “separation of duty” (placing the client
and server roles on different hosts), which is often considered a type of separation of
privilege.  The separation of duty is what allows us to apply simply rules but gain a
considerable amount of security.

• Least privilege.  In the design provided here, the server can only send out packets in reply
to a request from a client.  The server cannot send out any other packets unless explicitly
allowed by additional rules.

5 Conclusions
Two of the biggest threats facing the Internet and large organizations are worms and

cascading penetration. Our own research efforts in attack graphs and automated signature
generation, as well as similar research performed by a number of organizations, are designed to
identify optimal strategies for reducing these threats, but they often use complex analysis and
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expensive hardware.  Furthermore, the solutions under research today face a number of
challenges that limit their potentials for success.

The key to both of the threat of exponential growth of worms and the cascading
penetration into an organization is that each penetrated system can be used to attack additional
systems.  By addressing this critical fact using separation of roles and enforcing those roles with
simple ACLs in commodity routers, we greatly reduce the twin threats of server-based worms and
cascading attacks without deploying any new hardware or performing complex analysis and
improve the potential effectiveness of research under development in these areas.

In the final analysis we have only rediscovered an approach that was described in a
seminal paper in 1975, and we identified how this solution to the threats can ameliorate the
challenges to some of the more exotic solutions currently being researched.  Ultimately, we
believe that the approach presented here will serve as a baseline when quantifying the value
provided by more advanced research.  For example, we might compare the penetration rates for a
worm against (1) a network with no additional security, (2) a network using this simple separation
of roles and router-based enforcement of roles, (3) a network deploying some newly proposed
approach, and (4) a network using the role separation and enforcement along with the newly
proposed approach.
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Appendix A
As mentioned previously, the work that led to the router configuration recommendations

in this paper has been partially inspired by limitations with our work on the environment aware
security project.  The premise for this project is that system and network administrators cannot
keep all systems fully patched all the time, so we are trying to identify an optimization strategy
that provides the most security for a network for a given number of changes to that network.
Unfortunately, there are a number of limitations to our primary approach (attack graph analysis),
and in this appendix we look into more detail how the router configuration recommendations in
this paper can provide for approximate solutions without the need for a deep analysis of the
network required by the attack graph analysis approach.

Figure 11 shows a simple example that is typically covered in the literature (this one is
largely taken from [Shey 02]).  The adversary starts outside the organization on a host named
Eve, and her goal is to achieve root privilege on the host Bob.  The organization has a firewall to
limit external access to hosts inside the organization, but there are no limits on communications
between hosts inside the organization (e.g., Mary and Bob can freely communicate).  The firewall
has three holes punched into it to allow limited access to the hosts Mary and Bob, and Mary and
Bob have a number of network services or privileged programs that contain vulnerabilities.  The
attacker knows how to exploit four vulnerabilities: (1) a vulnerability in the FTP daemon that
allows her to place a .rhosts file on the server, (2) a vulnerability in the SSH daemon that gives
here root access on the server (“remote to root”), (3) a vulnerability in the Xterm privileged
program that gives her root access on the same machine (“local to root”), and (4) rlogin which, if
a .rhosts file exists, allows the adversary to login as a regular user (“remote to user”).

Figure 11: Simple Network – Goal: Achieve Root on Host Bob

While this example with four atomic attacks and three hosts is extremely simple, the
attack graph it produces is fairly complex.  Figure 12 shows the graph for this simple example.  In
this graph each node represents the state of the entire network (or at least the state that can be
changed), and we track the possible changes to the network from the initial state on the far left
where the adversary only has root on the host Eve to two different states on the right where the
adversary has achieved her goal of root access on the host Bob.  An arrow represents an atomic
attack that changes the network state.  As can be seen in the figure, there are 12 possible different
states with 23 different atomic attacks between those states.  The total number of unique
combinations of atomic attacks the adversary can use to achieve her goal in this very simple
network is 26.

While the size and complexity of the graph for this very simple example is impressive,
when [Shey 02] expanded the simple network example to two more hosts in the network (total of
5) and four more atomic attack techniques (total of 8), their graph grew to 5,948 nodes and
68,364 edges and took two hours to construct on their system.  While the time performance of the
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[Shey 02] work may be limited by their use of a symbolic model checker with its worse case
exponential performance, the more efficient approaches (using the assumption that all attacks are
monotonic – that is, no attack removes an existing capability from the adversary) used by [Amma
02] and [Noel 03] will still produce equivalently sized graphs.  To analyze a minimum set of
changes to such a graph that will partition the network and prevent the adversary from reaching
her goal, we could use something like the Edmonds-Karp algorithm which runs in O(V E2),
where V is the number of nodes and E is the number of edges.  In other words, for the simple case
of the example of 5 hosts and 8 exploits mentioned above, the time to identify the absolute
minimum changes to prevent the adversary from achieving her goal is bounded by O(5,948 *
68,3642) – a really big number (approximately 27 trillion operations).

Obviously, there are some computational issues that must be considered when scaling the
analysis up to realistically sized networks.  There are also additional issues that will impact the
effectiveness of the attack graph approach to identifying optimized changes for securing the
network.  One, gathering the vulnerability information is non-trivial.  One possible approach is
using network vulnerability scanners.  However, from our experiences with both open-source and
commercial vulnerability scanners they can produce erroneous results (false positives), can crash
systems, and, in order to scan for all possible vulnerabilities, can place a tremendous load on the
network.  Furthermore, network vulnerabilities will not catch privileged program vulnerabilities
such as the xterm vulnerability used in these examples.  Two, the approach assumes you know
from where the adversary will start and what her goal is.  If the adversary can start from
anywhere (e.g., can be an insider) or her goal can be anything, the problem becomes more
difficult.  Three, the approach assumes you know all the vulnerabilities and exploits that the
adversary knows.  If the adversary knows something you do not, then your analysis is flawed.

The focus of this paper is the development of a simple rule of thumb that if applied to the
network can address many of these issues.  For example, when the filtering rules are applied to
the simple example in Figure 11 (namely, if Mary is a server, then the host should not be able to
launch outbound connections (i.e., behave as a client)), it breaks several links in the attack graph.
Figure 13 shows the links in the graph that would be broken by applying this rule, and as
highlighted with the double diagonal lines, the result is that the attack graph is partitioned into
two graphs preventing the adversary from achieving her goal.  In short, if we were to perform a
min-cut analysis on the original attack graph, the end result would have been similar.  However,
in the case of applying the simple filtering rules (1) we do not need to gather the vulnerability
information, (2) we do not even need to know about the existence of the vulnerabilities, and (3)
we do not need to perform the deep analysis to build the attack graph and then identify the min-
cut.

In addition to the benefits just mentioned, if the filtering rules in this paper are generally
applied to an operational network and then a full attack graph analysis is performed, the resulting
graph should be considerably smaller because there will be far fewer edges and states available to
the adversary.  And because the graph is smaller, post analysis should be considerably faster.
Thus, the filtering rules presented in this paper can be used stand-alone and provide results that
approximate the optimal results generated by a full attack graph analysis, or it can be used in
conjunction with full graph analysis resulting in much better performance of the attack graph
analysis algorithms.
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Figure 12: Attack Graph For Simple Example

Figure 13: Attack Graph Partition By Simple Filter Rules


